Exercise 27

(a) If $f(x)=\sec x-x$, find $f^{\prime}(x)$.
(b) Check to see that your answer to part (a) is reasonable by graphing both f and f^{\prime} for $|x|<\pi / 2$.

Solution

Calculate the derivative of the given function

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}(\sec x-x) \\
& =\frac{d}{d x}(\sec x)-\frac{d}{d x}(x) \\
& =(\sec x \tan x)-(1) \\
& =\sec x \tan x-1
\end{aligned}
$$

The function and its derivative are plotted below versus x.

The answer in part (a) is reasonable because the graph of $y=f^{\prime}(x)$ is negative (positive) wherever $y=f(x)$ is decreasing (increasing).

